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1 Strong duality of KP formulation

We have discussed the KP formulation of finding the optimal transport plan, and solving the optimization
question:

inf
π

∫
X×Y

c(x, y)dπ, s.t. π ∈ Π(µ, ν), (1)

where Π(µ, ν) is the coupling over X × Y , such that the mass conversation holds.
Before introducing the duality, we start with the discretization formulation of the above problem,

min
π

∑
i,j

πijcij ,

s.t. µ =

n∑
i=1

µiδxi
, ν =

m∑
j=1

νjδyj

n∑
i=1

πij = νj , ∀j

m∑
j=1

πij = µi, ∀i

πij ≥ 0, ∀i, j

This is a linear programming with linear constraints. By using the dual form of LP, we could have the dual
problem:

max
u,v

n∑
i=1

µiui +

m∑
j=1

νjvj

s.t. ui + vj ≤ cij ,∀i, j.

Thus, we jump back to the original case and the optimization problem will be formulated as:

sup
u,v

{∫
X

u(x)dµ(x) +

∫
Y

v(y)dν(y) s.t. u(x) + v(y) ≤ c(x, y),∀x, y
}

(2)

⇐⇒ sup
u,v

{∫
X×Y

u(x)dπ(x, y) +

∫
X×Y

v(y)dπ(x, y) s.t. u(x) + v(y) ≤ c(x, y),∀x, y
}
. (3)
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This equivalence comes from the mass conservation condition, such that

π[x× Y ] = µ(x), π[X × y] = ν(y). (4)

From Eq (2), we could see the weak duality, because

sup
u,v

{∫
X×Y

u(x)dπ(x, y) +

∫
X×Y

v(y)dπ(x, y) s.t. u(x) + v(y) ≤ c(x, y),∀x, y
}

≤ inf
π

∫
X×Y

c(x, y)dπ(x, y).

We then prove the strong duality by first relaxing the constrained optimization problem to the uncon-
strained optimization problem by imposing the indicator function and the infinite penalty parameter.

inf
π∈Π

∫
c(x, y)dπ = inf

π

{∫
c(x, y)dπ(x, y) + lim

λ→∞
λ(1− I(π ∈ Π))

}
. (5)

For the second term, if the chosen π is in the constrained space Π, its value is 0, while its value is ∞ when
π does not belong to Π. We then show

Eq (5) = inf
π

{
sup
u,v

(∫
X

u(x)dµ(x) +

∫
Y

v(y)dν(y)−
∫
X×Y

(u(x) + v(y))dπ(x, y)

)}
(6)

This is because in Eq (4), we have shown that if π ∈ Π, then∫
X

u(x)dµ(x) +

∫
Y

v(y)dν(y)−
∫
X×Y

(u(x) + v(y))dπ(x, y) = 0.

If π /∈ Π, once we find u and v such that∫
X

u(x)dµ(x) +

∫
Y

v(y)dν(y)−
∫
X×Y

(u(x) + v(y))dπ(x, y) > 0,

we could always give a positive constant M and let M go to infinity to make the term become infinity, and
the same holds if ∫

X

u(x)dµ(x) +

∫
Y

v(y)dν(y)−
∫
X×Y

(u(x) + v(y))dπ(x, y) < 0,

where we could choose −M,M > 0, and let M go to infinity. As c has nothing to do with u(x) and v(y),

Eq (6) = inf
π

sup
u,v

{∫
u(x)dµ(x) +

∫
v(y)dν(y) +

∫
(c(x, y)− (u(x) + v(y))dπ(x, y)

}
. (7)

By [Villani, 2021] Section 1.1.6, we could switch the inf and sup from minimax principles. Then

Eq (7) = sup
u,v

inf
π

{∫
u(x)dµ(x) +

∫
v(y)dν(y) +

∫
(c(x, y)− (u(x) + v(y))dπ(x, y)

}
(8)

= sup
u,v

{∫
X

u(x)dµ(x) +

∫
Y

v(y)dν(y) + inf
π

∫
X×Y

(c(x, y)− (u(x) + v(y)))dπ(x, y)

}
(9)

For the third term, we could see that if u(x) + v(y) ≤ c(x, y), then the inf could go to 0, and if there exists
u(x∗) + v(y∗) > c(x∗, y∗), we could select π(x, y) with positive constant M such that π =Mδ((x∗, y∗)), and
when M goes to infinity, this term will go to −∞.

Using the same trick as in Eq (5), we could see the behavior of the second term is the same as the
indicator penalty for the condition u(x) + v(y) ≤ c(x, y) in the constrained optimization. Thus, the strong
duality holds, where

Eq (8) = sup
u,v

{∫
X

u(x)dµ(x) +

∫
Y

v(y)dν(y)

∣∣∣∣∣u(x) + v(y) ≤ c(x, y)

}
. (10)

Eq (10) transforms the original optimization problem to its dual form and shows the strong duality of
such transformation. We successfully jump from the high dimension over the coupling function to the lower
dimension over marginal functions.
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2 Dual problem refinement

We define two functions

• φ(x) = 1
2 ||x||

2
2 − u(x),

• ψ(y) = 1
2 ||y||

2
2 − v(y).

Remark: we use 1
2 ||x||

2
2 and 1

2 ||y||
2
2 here to construct the Legendre-Fenchel transform (see [Villani, 2021]

p.23 or [Legendre, 1787]).
Eq (10) could be further written as

sup
φ,ψ

(φ,ψ)∈Φ(φ,ψ)

∫
X

(
1

2
||x||22 − φ(x)

)
dµ(x) +

∫
Y

(
1

2
||y||22 − ψ(y)

)
dν(y). (11)

Choose the cost function c(x, y) = 1
2 ||x− y||22, we know the new feasible region becomes

(φ(x), ψ(y)) ∈ Φ(φ,ψ), s.t. φ(x) + ψ(y) ≥ x⊤y.

2.1 Legendre-Fenchel transform (convex conjugate)

Before moving forward, we introduce the Legendre-Fenchel transform, for the function f(x), its corresponding
Legendre-Fenchel transform is:

f∗(y) = sup
x
x⊤y − f(x).

The Legendre transform has the following properties:

• For any function f , f∗(y) is convex. This could be proved by definition:

f∗(λy + (1− λ)x) = sup
z
z⊤(λy + (1− λ)x)− f(z)

≤ sup
z
z⊤λy − λf(z) + sup

z
z⊤(1− λ)x− (1− λ)f(z)

= λf∗(y) + (1− λ)f∗(x).

• f(x) + f∗(y) ≥ x⊤y,∀x, y. The definition could also prove this:

f∗(y) = sup
x
x⊤y − f(x) ≥ x⊤y − f(x),∀x, y.

• f(x) ≥ f∗∗(x), which could be proved through:

f∗∗(x) = sup
y
x⊤y − f∗(x)

= sup
y

{
x⊤y − sup

z
{z⊤x− f(x)}

}
≤ sup

y

{
x⊤y − {y⊤x− f(x)}

}
= f(x).

• f(x) = f∗∗(x) if and only if f(x) itself is convex and lower semi-continuous by the Fenchel–Moreau
theorem, see Fenchel–Moreau theorem or [Borwein and Lewis, 2006]. To prove this, we only need to
prove the right-hand side f(x) ≤ f∗∗(x). As f(x) itself is convex and lower semi-continuous, f(x)
could be represented as:

f(x) = sup
α∈A

Lα(x),
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where Lα are hyper-planes indexed by the index set A, and because hyper-planes have linear forms,
we know

(Lα)∗∗ = Lα.

Then, ∀α, we know

f(x) ≥ Lα(x)

f∗(x) ≤ (Lα)∗

f∗∗ ≥ (Lα)∗∗ = Lα

⇒ f∗∗ ≥ sup
α
Lα(x) = f(x).

2.2 Reduce to conjugate Pairs

Let us reconsider the dual optimization problem:

sup
φ,ψ

(φ,ψ)∈Φ(φ,ψ)

∫
X

(
1

2
||x||22 − φ(x)

)
dµ(x) +

∫
Y

(
1

2
||y||22 − ψ(y)

)
dν(y)

(φ(x), ψ(y)) ∈ Φ(φ,ψ), s.t. φ(x) + ψ(y) ≥ x⊤y.

This problem is equivalent to

inf
φ,ψ

(φ,ψ)∈Φ(φ,ψ)

∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y)

(φ(x), ψ(y)) ∈ Φ(φ,ψ), s.t. φ(x) + ψ(y) ≥ x⊤y,

where φ(x) = 1
2 ||x||

2
2 − u(x) and ψ(y) = 1

2 ||y||
2
2 − v(y).

First we need to check the feasible set is non empty. We could easily use φ(x) = 1
2 ||x||

2
2 and ψ(y) =

1
2 ||y||

2
2.

By the basis inequality, we know the feasible set is non-empty.
Second, we would like to reduce the pair (φ(x), ψ(y)) to the pair of one function with its convex conjugate.

For pair (φ,ψ), we define

inf
φ,ψ

(φ,ψ)∈Φ(φ,ψ)

∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y) = J [φ,ψ].

We could prove if (φ,ψ) ∈ Φ, then (φ∗, φ∗∗) ∈ Φ, and J [φ∗, φ∗∗] ≤ J [φ,ψ]. Thus, we could limit our
searching space to all convex conjugate pairs because if we have solution pair (φ′, ψ′), we could always find
the convex conjugate pair (φ′∗, φ′∗∗) to achieve smaller values.

To prove this argument, we first show φ∗ + φ∗∗ ≥ x⊤y,∀x, y. This is easily satisfied by the second
property of Legendre-Fenchel transform. We also know φ(x) ≥ φ∗∗(x). Thus, we only need to show

ψ(y) ≥ φ∗(y).

This could be proved as follows:

(φ,ψ) ∈ Φ ⇒ φ(x) + ψ(y) ≥ x⊤y,∀x, y
ψ(y) ≥ x⊤y − φ(x)

⇒ ψ(y) ≥ sup
x
{x⊤y − φ(x)} = φ(y)∗.

Our problem is reduced to convex conjugate pairs, that is,
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inf
φ∗,φ∗∗

∫
X

φ∗∗(x)dµ(x) +

∫
Y

φ∗(y)dν(y). (12)

Now, we successfully translate the original constrained optimization problem Eq (1) to unconstrained
Eq (12), an optimization problem with only one function. This trick is known as “Double Convexification”.
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